

Technology Match Maker | Veterinary Diagnostics | Dec 2024

Title of the tech: PAASHA YA

Saving livestock, one kit at a time!

Lead Scientist: Dr. Dhanasekaran Shanmugam

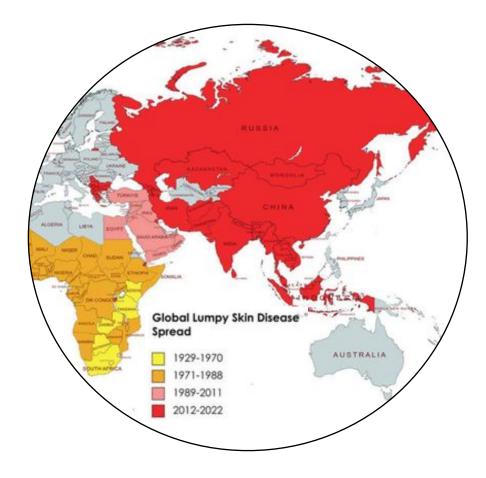
Organization: CSIR-National Chemical Laboratory

TechEx.in Case Manager: Kavita Parekh (kavita.parekh@venturecenter.co.in)

TechEx.in is a Regional Tech Transfer (1)
Office supported by:

193.46 Million Cattle in India

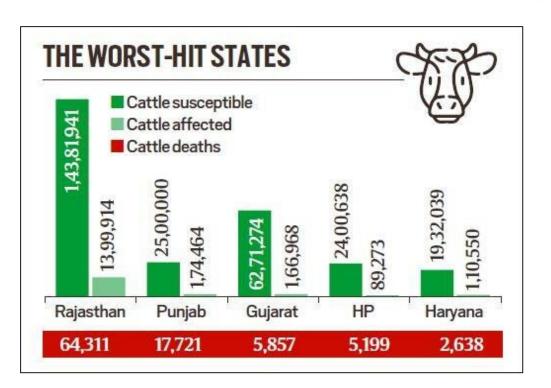
(Source: DAHD, GOI)


India ranks first in milk production @ 210 M tonnes / year

- Dairy industry is a significant contributor to the agri-economy ecosystem
- India largely comprises of unorganized dairy sector
- Infectious disease affect the animal welfare and dairy economy
- •One-health focus

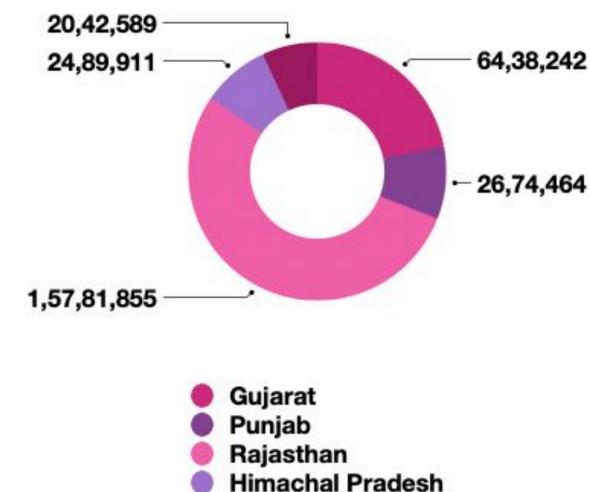
One of the important disease affecting dairy cattle is the **Lumpy Skin Disease Virus (LSDV)**

Was restricted to African continent Present in 23 Asian countries


- Official reporting in India in 2019
- · Rapid spread and huge disease burden

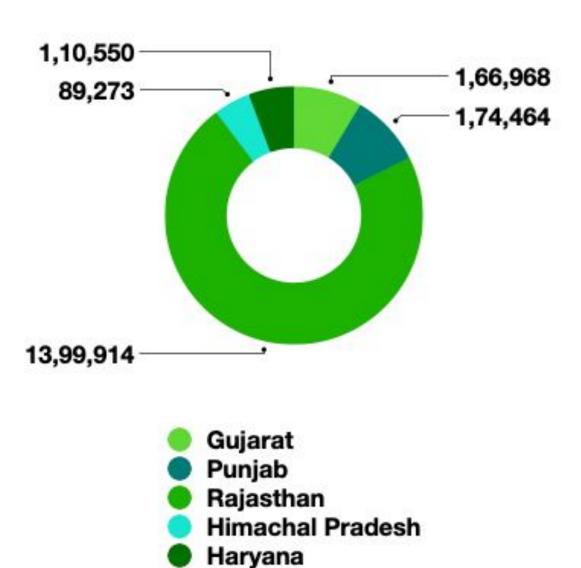
Economic loss due to LSD nationally in >2 billion USD

- 15%-20% loss in milk production in total
- •Infected animals showed 80% reduction in milk production within 2 weeks
- Recovered animals could not reach original level of milk production
- Permanent production loss up to 50% reported (1-3 L / animal)
- Reproduction affected in infected animals



- 2.5 M Lumpy Skin Disease cases in 2022 (Source: The Hindu)
- 1-5% death in adult animals; up to 60% mortality in heifers
- Economic loss per animal due to LSD is estimated to be ~ INR 9000/-
- Most vulnerable group are the small holding farmers

(Source: ICAR, GOI)



Cattle susceptible to LSD

Haryana

Cattle affected by LSD

Cattle death due to LSD

Case fatality rates:

- Morbidity rates range between 5-45%
- •Case fatality ranges between 2-10%

Need of the hour:

- No specific treatments available
- Available options include quarantine and goat-pox vaccine

Tackling the disease

- Pharmaceutical treatment not disease specific
- Generalized treatment for symptoms
- Local ethano- or phyto-treatments practiced
- Vector control undertaken
 (Transmission by contact / environment possible)

Preventive vaccination is available

- Homologous vaccine used outside India
- Heterologous (goat pox) vaccine used in India

Action taken by herd owners

- Vaccinating animals (can reduce mortality but other issues remain)
- Symptomatic treatment / antibiotic skin care

Testing for early detection and isolation of infected animal

- Local veterinarians can recommend lab testing in registered animals
- 5%-10% of asymptomatic animals in the herd can be tested seasonally

(Source: ICAR, GOI)

Currently available solutions

DAHD (GOI) recommended disease confirmation - symptomatic testing

Field Diagnosis:

• Skin nodules, necrosis of skin nodules, fever and emaciation

Laboratory-based Diagnosis:

- Histopathological findings
- Virus culture
- ELISA
- Fluorescent Antibody test
- PCR and RT-PCR
- All testing done by ICAR labs (poor coverage of cattle population)

Benefits	ELISA kits	Imported Real time PCR kits	Paashavya LSDV kit
Sensitivity	Moderate	High	High
Real time detection	No	++	++++
Multiplexed primers for detection	No	No	Yes
Applicability to be used for health monitoring	No	No	Yes
Asymptomatic (early) detection	No	No data	Yes
Cost	Moderate	High	Low

No commercial testing in India

Value proposition

Affordable

To livestock owners with small to large herd sizes

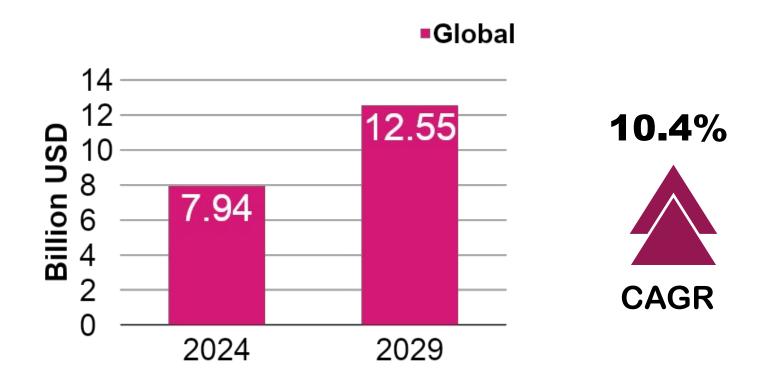
Scalable

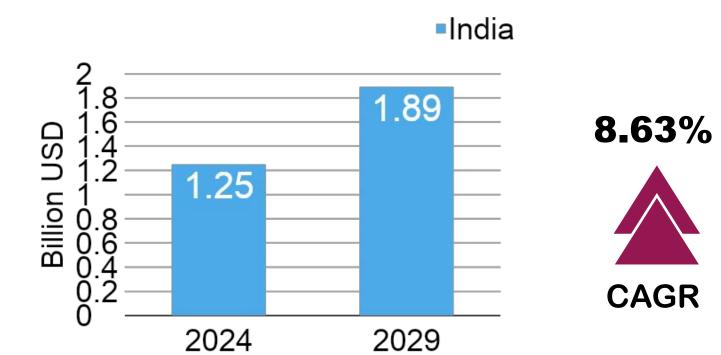
Useful for cattle health monitoring and applicable for other cattle diseases

2

Sensitive

Facilitates early detection from asymptomatic cattle


Easy to use

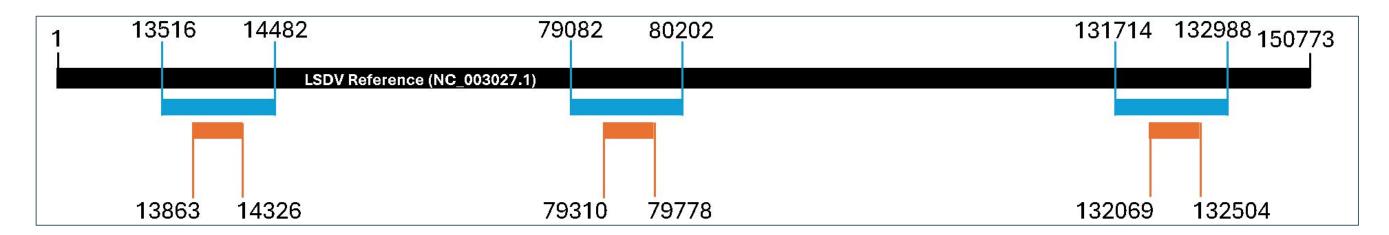

No need for skilled/ experienced professional for handling 4

Market segment

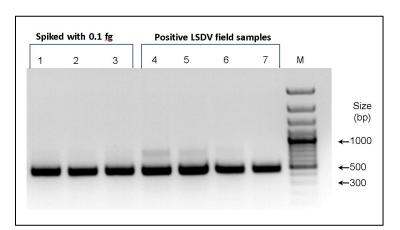
Market size of Veterinary diagnostics

Customer Segment:

- **Veterinarians:** Primary users of the diagnostics, who will recommend testing to farmers.
- **Farmers:** End beneficiaries, including individual farmers and corporate cattle farms.


Future requirement

- Detection of multiple diseases in single sample collection
- Detecting pathogen variants


About the Technology

Our approach

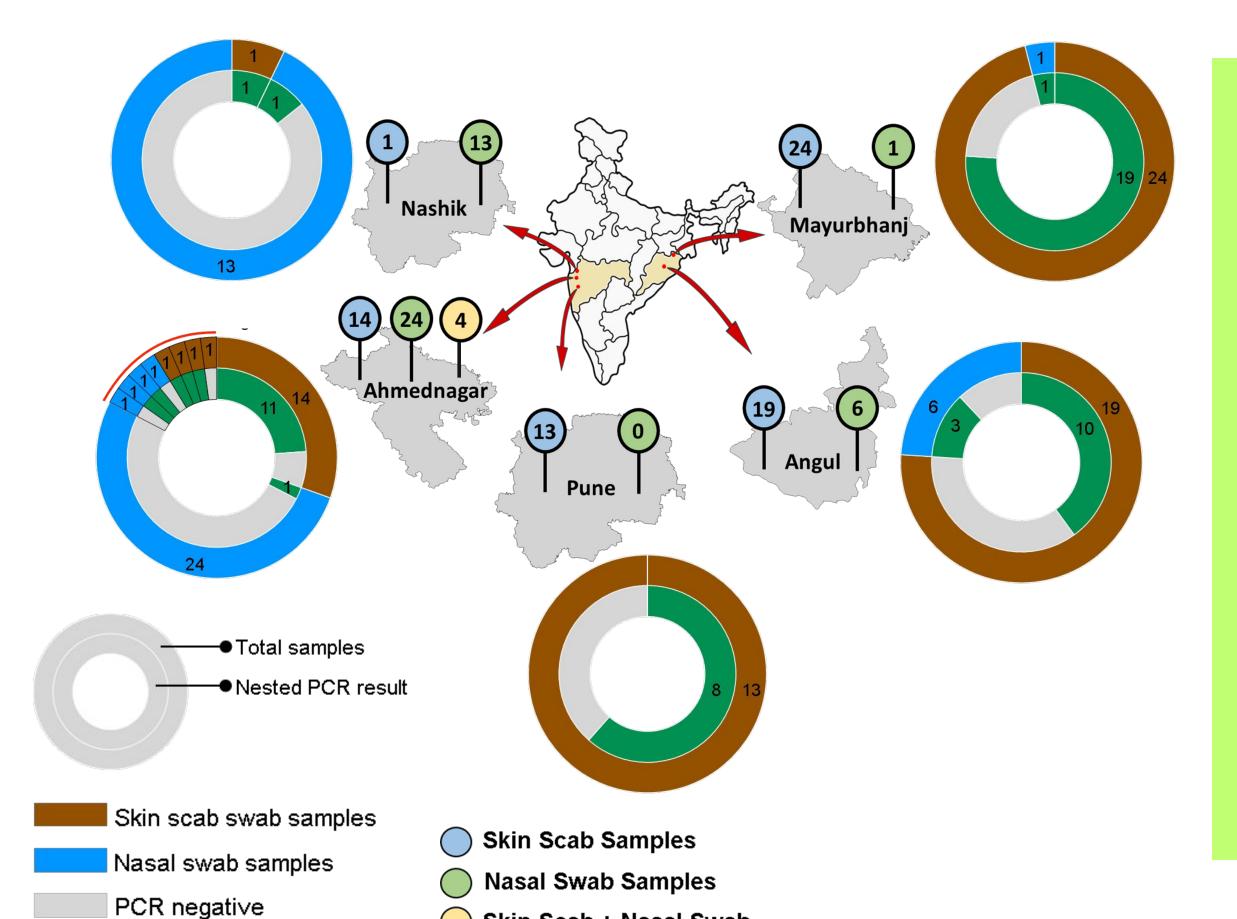
Sensitivity

As low as 30 copies of viral DNA can be detected

Multiplex PCR

- Selection of multiple target regions
- Single tube reaction
- Detection possible with degraded or mutated DNA
- Detection of low viral loads

Readout Options


- Visualization by agarose gel electrophoresis
- Real Time PCR is under development
- Nanopore sequencing for cost efficient high throughput detection

Technology Match Maker | VCMM | 11 Dec 2024 | Paashavya

On Ground Research

Nested PCR positive

Skin Scab + Nasal Swab

- Non-invasive (swab) sampling from animals with varied disease progression (incl. asymptomatic)
- 48 samples found positive from asymptomatic animals
- 14.6% of asymptomatic samples were tested positive
- Asymptomatic positive samples were confirmed for LSDV infection using Oxford Nanopore Technology
- Ability to detect asymptomatic LSDV infections

Current Status

Technology Status:

- Selected and presented in the second round of BEST-ABLE 2024 west-zonal contest
- IP Status: Patent filed
- Priority date: 3/10/2024
- Coverage: India
- Patent File No.: 202411074686
- Patent filing: To be completed in 2025

Publications:

 Surveillance of Lumpy Skin Disease Virus (LSDV) and variant characterization from dairy cattle in India – Manuscript submitted to Virus Evolution-Oxford Academic journal

Awards

- Awarded Best Poster at the National Science Day celebration held at CSIR-NCL, Pune on 26th Feb, 2024
- Best poster award in the 32nd National Congress of Parasitology conference held at IISER-Pune on 3rd-5th Oct, 2024

Team & Organisation

Lead Scientist

Organization: CSIR-National Chemical Laboratory, Pune

- Premier R&D laboratory in chemical and biological sciences & engineering
- Track record of working with industry and tech transfer / spinout ecosystem

Team strengths and expertise

Sindhuri Upadrasta

Molecular Biology Parasitology

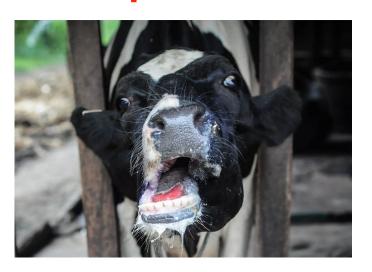
Manali Bajpai

NGS technology Animal Diseases Molecular Diagnostics

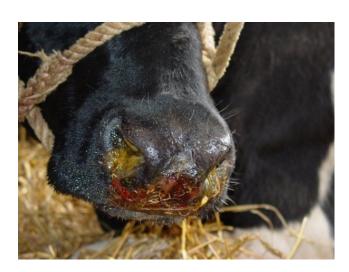
Ajinkya Khilari

NGS technology
Genomics
Molecular Diagnostics

Dr. Dhanasekaran Shanmugam Senior Principal Scientist, CSIR-NCL


- 20+ years of experience in molecular parasitology / infectious disease
- National & global recognition
- Track record of R&D projects funded by CSIR/DBT/SERB/DST / Mentoring Ph.D & M.Tech students / National & international collaborations
- BMGF funding for developing low cost diagnostics for livestock diseases
- Networking with organization working in livestock sector - BAIF, Pune / ICAR-NIVEDI

Next Steps


Tech Ex.in

Tech Transfer Hub at Venture Center
Supported by NBM - BIRAC

- Optimizing/improving the LSDV diagnostic kit (qPCR / Nanopore sequencing)
- Developing rapid diagnostic methods for the detection of other cattle diseases like Foot and mouth disease, brucellosis and hemo-protozoan infections

- Development of point of care detection (eg: CRISPR)
- Establishing tie-ups with commercial farms for carrying out regular inspections of their herds
- Developing a diagnostic panel encompassing all notifiable animal diseases
- Spreading awareness of the benefits of early detection of animal diseases among livestock owners

Seeking:

- Industrial partners interested in sponsoring further technology advancement and scale up.
- Industrial partners interested in raising
 3rd party funds for a collaborative
 project.
- Industrial partners interested in technology licensing.
- Industries interested in tapping scientist capabilities as an expert/ consultant.
- Tie-ups with commercial farms or Government organizations to carry out regular checkups for cattle.popp

For More Information Contact:

Kavita Parekh

kavita.parekh@venturecenter.co.in | +91-89564-57042

TechEx.in is a Regional Tech Transfer Office supported by:

References

- Mathivanan E, Raju K and Murugan R. Outbreak of Lumpy skin disease in India 2022-an emerging threat to livestock & livelihoods. Global Biosecurity. 5. 2023, 10.31646/gbio.187.
- Bhatt L, Bhoyar RC, Jolly B, Israni R, Vignesh H, Scaria V, Sivasubbu S. The genome sequence of lumpy skin disease virus from an outbreak in India suggests a distinct lineage of the virus. Arch Virol. 2023, 168(3):81.
- Reddy, M.G., Kumar, N. and Tripathi, B.N. Epidemiology of Lumpy skin disease in India-Mini review. Indian Journal of Veterinary Pathology. 2023, 47(4):277-286.
- Yadav P, Kumar A, Nath SS, Devasurmutt Y, Shashidhar G, Joshi M, Puvar A, Sharma S, Raval J, Pandit R, Chavda P, Nagaraj S, Revanaiah Y, Patil D, Raval SK, Raval J, Kanani A, Thakar F, Kumar N, Reddy GBM, Joshi C, Gulati BR, Tatu U. Unravelling the genomic origins of lumpy skin disease virus in recent outbreaks. BMC Genomics. 2024, 25(1):196.
- Quick J, Grubaugh ND, Pullan ST, Claro IM, Smith AD, Gangavarapu K, Oliveira G, Robles-Sikisaka R, Rogers TF, Beutler NA, Burton DR, Lewis-Ximenez LL, de Jesus JG, Giovanetti M, Hill SC, Black A, Bedford T, Carroll MW, Nunes M, Alcantara LC Jr, Sabino EC, Baylis SA, Faria NR, Loose M, Simpson JT, Pybus OG, Andersen KG, Loman NJ. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat Protoc. 2017, 12(6):1261-1276.
- Mathijs E, Haegeman A, De Clercq K, Van Borm S, Vandenbussche F. A robust, cost-effective and widely applicable whole-genome sequencing protocol for capripoxviruses. J Virol Methods. 2022, 301:114464.
- Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30(14):3059-66.
- Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol Biol Evol. 2020, 37(5):1530-1534.
- Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49(W1):W293-W296.

 Technology Match Maker | VCMM | 11 Dec 2024 | Paashavya